Program Overview

  • Duration

    6 Months (Self-Paced) Program

  • Total Courses

    05

  • Total Credit Hours

    30

In the Civil Engineering program, students become experts in designing and managing infrastructure projects that shape our world. They explore structural engineering, transportation systems, environmental engineering, and urban planning. Graduates are well-equipped to design, construct, and maintain critical infrastructure, from bridges and buildings to transportation networks.

Structure Basics introduces students to fundamental principles of civil engineering structures. Topics include structural analysis, design, and construction techniques.


Fundamentals Of Transportation Engineering focuses on transportation engineering principles, covering road design, traffic engineering, and transportation planning. Students learn about transportation systems and their impact on society.


Construction Planning explores project management in construction. Students study scheduling, cost estimation, and project execution. The course equips students with skills for successful construction project management.


Structural Analysis focuses on the analysis of civil engineering structures. Students study the behavior of structures under various loads and conditions.


Gain an introduction to finite element analysis (FEA) and its applications in engineering analysis. Learn about numerical techniques for solving complex engineering problems. Analyze stress analysis, structural mechanics, and the use of FEA software.

TUITION

Fees Breakdown Cost
GRADUATE DIPLOMA IN ENGINEERING $6,450
Medical Insurance $0.00
Personal Expenses $0.00
Study Materials $0.00
Food Cost $0.00
Total Tuition Fee $6,450
WHERE AFFORDABILITY

Meets Opportunity

At the University of North Carolina, we champion the synergy of affordability and opportunity. Our unwavering dedication to accessible education ensures that exceptional learning doesn't come with an exorbitant price. We unlock the gates to knowledge, extending students the opportunity to flourish without the heavy weight of overwhelming tuition costs, empowering them for a brighter, more promising future.

Our Eligibility Criteria

Explore UONC’s Eligibility Criteria for Students Worldwide

Eligibility Criteria

Bachelor's degree, or equiv. International Education

Credit Hours

30

Course Duration

6 Months (Self-Paced) Program

Courses Offered

05

Mastering Engineering Basics and Technical Excellence

At the College of Engineering, our curriculum is structured to lay a solid groundwork in engineering basics and technical expertise. Students commence their journey by cultivating a profound grasp of fundamental engineering disciplines and acquiring practical skills in creative problem-solving and innovation. This technical foundation equips our students for a prosperous career in the ever-evolving realm of engineering.

Practical Implementations and Collaborations with Industry

Beyond the classroom, our College of Engineering places a significant emphasis on real-world applications and industry partnerships. Students have opportunities to work on engineering projects, collaborate with engineering firms, and engage in research with cutting-edge technology. These experiences not only enhance their practical engineering skills but also provide valuable insights into the industry.

Addressing Global Engineering Complexities and International Partnerships

At the University of North Carolina's College of Engineering, our steadfast commitment lies in tackling worldwide engineering complexities and nurturing international partnerships. Our curriculum delves into global engineering methodologies and inspires students to partake in projects with a far-reaching impact. Moreover, we provide study abroad programs and actively collaborate with engineers from across the globe, equipping our students with a comprehensive global perspective on the field of engineering.

Structure Basics (CIE-141)

TOPICS COVERED IN THIS COURSE
  In Section 1 of this course you will cover these topics:
     Introduction
     Design Loads
     Statics Of Structures-Reactions
     Trusses
  In Section 2 of this course you will cover these topics:
     Beams And Frames
     Cables
     Arches
     Live Load Forces: Influence Lines For Determinate Structures
  In Section 3 of this course you will cover these topics:
     Deflections Of Beams And Frames
     Work-Energy Methods For Computing Deflections
     Analysis Of Indeterminate Structures By The Flexibility Method
     Analysis Of Indeterminate Beams And Frames By The Slope-Deflection Method
  In Section 4 of this course you will cover these topics:
     Moment Distribution
     Indeterminate Structures: Influence Lines
     Approximate Analysis Of Indeterminate Structures
  In Section 5 of this course you will cover these topics:
     Introduction To The General Stiffness Method
     Matrix Analysis Of Trusses By The Direct Stiffness Method
     Matrix Analysis Of Beams And Frames By The Direct Stiffness Method

Fundamentals Of Transportation Engineering (CIE-232)

TOPICS COVERED IN THIS COURSE
  In Section 1 of this course you will cover these topics:
     Transportation Basics
     Traffic Flow: Theory And Analysis
     Highway Design For Performance
  In Section 2 of this course you will cover these topics:
     Modeling Transportation Demand And Supply
     Planning And Evaluation For Decision-Making
     Safety On The Highway
  In Section 3 of this course you will cover these topics:
     Highway Design For Safety
     Design Of Intersections For Safety And Efficiency
     Highway Design For Ride-Ability (Pavement Design)
  In Section 4 of this course you will cover these topics:
     Public Mass Transportation
     Air Transportation And Airports
  In Section 5 of this course you will cover these topics:
     Moving Freight
     Toward A Sustainable Transportation System

Construction Planning (CIE-257)

TOPICS COVERED IN THIS COURSE
  In Section 1 of this course you will cover these topics:
     The Owners Perspective
     Organizing For Project Management
  In Section 2 of this course you will cover these topics:
     The Design And Construction Process
     Financing Of Constructed Facilities
  In Section 3 of this course you will cover these topics:
     Construction Pricing And Contracting
     Pre-Project Planning
  In Section 4 of this course you will cover these topics:
     Construction Planning
     Fundamental Scheduling Procedures
  In Section 5 of this course you will cover these topics:
     Money And Network Schedules
     Quality Control And Safety During Construction

Introduction To Civil Engineering Materials (CIE-537)

TOPICS COVERED IN THIS COURSE
  In Section 1 of this course you will cover these topics:
     Introduction
     Aggregates
  In Section 2 of this course you will cover these topics:
     Concrete And Other Cementitious Materials
     Masonry
  In Section 3 of this course you will cover these topics:
     Wood And Wood Products
     Bituminous Materials And Mixtures
  In Section 4 of this course you will cover these topics:
     Iron And Steel
  In Section 5 of this course you will cover these topics:
     Plastics And Soils

Introduction To Finite Elements(MEE-709)

TOPICS COVERED IN THIS COURSE
  In Section 1 of this course you will cover these topics:
     Fundamental Concepts
     Matrix Algebra And Gaussian Elimination
     One-Dimensional Problems
  In Section 2 of this course you will cover these topics:
     Trusses
     Two-Dimensional Problems Using Constant Strain Triangles
     Axisymmetric Solids Subjected To Axisymmetric Loading
  In Section 3 of this course you will cover these topics:
     Two-Dimensional Isoparametric Elements And Numerical Integration
     Beams And Frames
  In Section 4 of this course you will cover these topics:
     Three-Dimensional Problems In Stress Analysis
     Scalar Field Problems
  In Section 5 of this course you will cover these topics:
     Dynamic Considerations
     Introduction To Engineering Design